Dimensionless Evaluation of Cell Deformability with High Resolution Positioning in a Microchannel
نویسندگان
چکیده
F. Arai e-mail: [email protected] Abstract This chapter covers dimensionless evaluation for the stiffness-based deformability of a cell using a high-resolution vision system and a microchannel. In conventional approaches, the transit time of a cell through a microchannel is often utilized for the evaluation of cell deformability. However, such time includes both the information of cell stiffness and viscosity. In this work, we eliminate the effect from cell viscosity, and focus on the cell stiffness only. We find that the velocity of a cell varies when enters a channel, and eventually reaches to equilibrium where the velocity becomes constant. The constant velocity is defined as the equilibrium velocity of the cell, and it is utilized to define the observability of stiffnessbased deformability. The necessary and sufficient numbers of sensing points for evaluating stiffness-based deformability are discussed. Through the dimensional analysis on the microchannel system, three dimensionless parameters determining stiffness-based deformability are derived, and a new index is introduced based on these parameters. The experimental study is conducted on the red blood cells from a healthy subject and a diabetic patient. With the proposed index, we showed that the experimental data can be nicely arranged.
منابع مشابه
High Resolution Cell Positioning Based on a Flow Reduction Mechanism for Enhancing Deformability Mapping
The dispersion of cell deformability mapping is affected not only by the resolution of the sensing system, but also by cell deformability itself. In order to extract the pure deformability characteristics of cells, it is necessary to improve the resolution of cell actuation in the sensing system, particularly in the case of active sensing, where an actuator is essential. This paper proposes a n...
متن کاملTime-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کاملEvaluation of the Regularization Algorithm to Decorrelation of Covariance Matrix of Float Ambiguity in Fast Resolution of GPS Ambiguity Parameters
Precise positioning in Real Time Kinematic (RTK) applications depends on the accurate resolution of the phase ambiguities. In RTK positioning, ambiguity parameters are highly correlated, especially when the positioning rate is high. Consequently, application of de-correlation techniques for the accurate resolution of ambiguities is inevitable. Phase ambiguity as positioning observations by the ...
متن کاملevaluation of rock mass deformability
One of the most important effective parameters in design of engineering structures is deformability of rock mass. Benchmark of rock mass deformability is the deformation modulus that directly or indirectly obtained. Since the determination of rock mass deformation modulus indirect method by in-situ tests is time-consuming, costly and difficult from executive operations aspect, so it’s correctly...
متن کاملRed blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
We investigated the behavior of red blood cells (RBCs) in a microchannel with stenosis using a confocal micro-PTV system. Individual trajectories of RBCs in a concentrated suspension of up to 20% hematocrit (Hct) were measured successfully. Results indicated that the trajectories of healthy RBCs became asymmetric before and after the stenosis, while the trajectories of tracer particles in pure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017